Loading Events

« All Events

  • This event has passed.

Kernelization, Proof Complexity and Social Choice

April 22, 2021 @ 10:00 am - 12:00 pm

Title: Kernelization, Proof Complexity and Social Choice

Speaker: Gabriel Istrate (West University of Timișoara)


We display an application of the notions of kernelization and data reduction from parameterized complexity to proof complexity: Specifically, we show that the existence of data reduction rules for a parameterized problem having (a) a small-length reduction chain, and (b) small-size (extended) Frege proofs certifying the soundness of reduction steps implies the existence of subexponential size (extended) Frege proofs for propositional formalizations of the given problem. We apply our result to infer the existence of subexponential Frege and extended Frege proofs for a variety of problems. Improving earlier results of Aisenberg et al. (ICALP 2015), we show that propositional formulas expressing (a stronger form of) the Kneser-Lovasz Theorem have polynomial size Frege proofs for each constant value of the parameter k. Previously only quasipolynomial bounds were known (and only for the ordinary Kneser-Lovasz Theorem). Another notable application of our framework is to impossibility results in computational social choice: we show that, for any fixed number of agents, propositional translations of the Arrow and Gibbard-Satterthwaite impossibility theorems have subexponential size Frege proofs.

This is joint work with Cosmin Bonchiș and Adrian Crăciun.


April 22, 2021
10:00 am - 12:00 pm
Event Category: